Imperial College London

Pressure Ideal Gas Laws

Measures of gases

- Pressure - How?
- Volume - How?
- Temperature - How?
- Water freezes at?
- Water boils at?

- These measures also apply to solids and liquids

How does it work?

Imperial College London

- Pressure Gauge (bourdon tube)
- Many other types

How does it work?

Imperial College London

- Thermometer (liquid/gas)
- Thermometer (bi-metallic)
- Many other types

room temperature

How does it work?

- Gas syringe (gas displacement)

Ideal Gas Relationships

- Are pressure, volume, temperature related?
- What is your intuition?
- Why?

Boyle's Law Practical

- Materials
- Gas Syringe
- Pressure Sensor
- Data Logger
- Results
- Record all parameters
- Plot data
- Change one variable

Imperial College London

- Robert Boyle (1627-1691)
- Boyle's Law: The pressure (P) of a closed vessel is inversely proportional (k) to the change in (V)
- Mathematically: PV $=\mathrm{k}$

Imperial College London

- Joseph Louis Gay-Lussac (1778-1850)
- Gay-Lussac Law: The pressure (P) of a closed vessel is directly proportional (k) to its temperature (T)
- Mathematically: $\frac{P}{T}=k$

- Jacques Charles (1746-1823)
- Charles Law: The volume (V) of a gas is directly proportional (k) to its temperature (T)
- Mathematically: $\frac{V}{T}=k$

- Amadeo Avogadro (1776-1856)
- Avogadro's Law: The volume (V) occupied by a gas is directly proportionally (k) to the number of molecules (n) of gas
- Mathematically: $\frac{V}{n}=k$

Ideal Gas Law

Imperial College London

- $P V=n R T$
- P: pressure (kPa)
- V: Volume (L)
- n : number of molecules (mol)
- R: universal gas constant $8.314 \mathrm{kPa} \cdot \mathrm{L} / \mathrm{mol} / \mathrm{K}$
- T: temperature (K)

Charles' Law Practical

- Materials
- Flask with boiling water
- Stopper
- Cold water
- Results
- Volume (hot)
- Volume (cold)

Things worth considering

- Observation based results/equations
-Why do these properties influence one another?
-What do these properties measure?

What are we measuring?

- Volume
- Displaced space
- Pressure
- Average molecular collisions exerting force on container
- More collisions = more force
- Temperature
- Average kinetic energy of molecules
- More temperature = faster

Questions worth asking

- What is an ideal gas?
- Theoretical property of gases
- Important for simplifying many things in physics and mechanics
- Are they real?
- N, O, H, CO2, and noble gases are mostly ideal gases
- Gases are generally ideal in natural conditions (where the laws were derived)

Negative Pressure

- Whoosh Bottle Video: https://www.youtube.com/watch?v=98Vkl1YnNFs
- Can we have negative pressure?
- Pressure below atmospheric - yes
- Negative - no
- Vacuum - absence of matter and molecular collisions
- Atmospheric Pressure
- 14.7 psi or 100 kPa
- What causes this?
- Reduce atmospheric pressure?

Manometer

Imperial College
London

- Open tube is filled with water
- One end is caped and extra air is added...
- Air is removed from the capped end...

